Future Memory Technology and Ferroelectric Memory as an Ultimate Memory Solution

نویسندگان

  • Kinam Kim
  • Dong Jin Jung
چکیده

Silicon industries have notched up notable achievements of computer-related technology over the past two decades, leading to rapid progression in information technology (IT). As a result of such a great improvement in IT applications, it is now not unusual to find mobile applications such as personal digital assistants, mobile phones with digital cameras, smart phones, smart pads able to access the Internet and hand-held personal computers. These mobile applications currently require an array of single-functioned conventional memories as they are not sufficient individually in functionality, but must combine their separate functions. For example, dynamic random access memory (DRAM) is capable of processing massive amounts of data speedily (e.g., main memory in personal computers and servers). DRAM is highly scalable (several gigabit are commonly accessible), but requires lots of power consumption even in stand-by mode (~10-3 Ampere) because of the necessity of refreshing cycles in its operation. By contrast, static random access memory (SRAM) saves power1 because its stand-by current is a few micro-Amperes. The demerit of SRAM is not readily to make it high density. This is due to the fact that its unit memory element consists of four complementary metal-oxide-semiconductor (CMOS) transistors along with two conventional transistors. SRAM’s cost-benefit ratio is too high because the 6 components need much more area per unit bit memory. Data retention of both DRAM and SRAM is volatile in bit-storing nature when power goes off. In contrast to these two memories, flash memory is non-volatile. However, operation voltage during either write or erase on flash memory is too high to use the raw voltage-level of power input, Vcc (the term of Vcc comes from collector to collector voltage in a bipolar transistor). Thus during the write or erase operation, internal dummy operation (so called “charge pump”) are used to pump up the input power Vcc to 5 times more than Vcc level; this is crucial in flash memory devices due to imbalance of read and write energy. The reason why the memory needs to boost the write/erase voltage up to such a high level is that hot carriers, e.g., high energy electrons, are forced to be injected through tunnel oxide to a floating gate of the transistor structure. As a result, there are two kinds of performance restrictions for use of IT applications. Writing speed of flash memory is not fast enough of an order of several milliseconds. That

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedded Memory Test Strategies and Repair

The demand of self-testing proportionally increases with memory size in System on Chip (SoC). SoC architecture normally occupies the majority of its area by memories. Due to increase in density of embedded memories, there is a need of self-testing mechanism in SoC design. Therefore, this research study focuses on this problem and introduces a smooth solution for self-testing.  In the proposed m...

متن کامل

Memory, imagination and literary creativity as origins in the works of A. S. Pushkin

The article analyses the research carried out during the last 5 years, which is dedicated not only to a historical theme in Pushkin’s works, but also historicism as a phenomenon of A.S. Pushkin’s creative mind. In contrast with traditionally considered aspects of Pushkin’s historicism, the author analyses the genesis of Pushkin’s perception of history. The events imprint...

متن کامل

Quantum tunnelling and charge accumulation in organic ferroelectric memory diodes

Non-volatile memories-providing the information storage functionality-are crucial circuit components. Solution-processed organic ferroelectric memory diodes are the non-volatile memory candidate for flexible electronics, as witnessed by the industrial demonstration of a 1 kbit reconfigurable memory fabricated on a plastic foil. Further progress, however, is limited owing to the lack of understa...

متن کامل

Adaptive Tunable Vibration Absorber using Shape Memory Alloy

This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...

متن کامل

Intra-CA1 administration of FK-506 (tacrolimus) in rat impairs learning and memory in an inhibitory avoidance paradigm

Objective(s): Calcineurin (CN) is a main phosphatase and a critical regulator of cellular pathways for learning, memory, and plasticity. The FK-506 (tacrolimus),a phosphatase inhibitor, is a fungal-derived agent and a common immune suppressant extensively used for tissue transplantation. To further clarify the role of CN in different stages oflearning and memory the main aim of this study was t...

متن کامل

FeTRAM. An organic ferroelectric material based novel random access memory cell.

Science and technology in the electronics area have always been driven by the development of materials with unique properties and their integration into novel device concepts with the ultimate goal to enable new functionalities in innovative circuit architectures. In particular, a shift in paradigm requires a synergistic approach that combines materials, devices and circuit aspects simultaneous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012